
Hans-Petter Halvorsen

https://www.halvorsen.blog

Internet of Things
and Arduino

• Introduction
• Arduino
• Temperature Sensors
• Lowpass Filter
• PID Controller and Arduino Analog Out
• Arduino Library
• Air Heater
• ThingSpeak
• LabVIEW LINX
• Cyber Security

Table of Contents

• Cloud services and IoT solutions are
becoming increasingly popular.

• Even the industry embrace IoT as Industrial
Internet of Things (IIoT)

• IIoT is an important part of the next
generation Automation Systems

• We will use Arduino as our IoT device
• Arduino is popular to use in different IoT

applications

Introduction

• Internet of Things (IoT)
• Microcontrollers (Arduino)
• PWM (Pulse Width Modulation)
• Automation
• ThingSpeak (IoT Cloud Service)
• Cyber Security

Topics

• In this Assignment we will create an embedded Arduino PI(D)
controller from scratch.

• One of the challenges is that Arduino UNO has no Analog Out.
• How can we solve that?
• The Data should be stored in the Cloud
• The Final System should be tested on the Air Heater System, i.e., you

should control the Air Heater System
• Compare the results using LabVIEW LINX
• You should start your work by creating a System sketch. In that way

you will get an overview of the system you are going to create and are
able to plan your work and progress, so you are finished within the
given deadline

Delivery

For more details, see the web site

Hans-Petter Halvorsen

https://www.halvorsen.blog

Arduino

Table of Contents

Arduino

1

2

3

External Power
Supply

USB for PC
connection

Digital ports (2-13)

Analog In ports (0-5)

Reset button

4 5

6

5V, GND

Arduino Software

In this window
you create your

Program

Compile and Check
if Code is OK

Creates a New Code Window

Open existing Code

Upload Code to Arduino Board Save

Open Serial Monitor

Error Messages
can be seen here

www.arduino.cc

An be downloaded for free:

http://www.arduino.cc/

Arduino Programs
// Initialization, define variables, etc.

void setup()
{

// Initialization
...

}

void loop()
{

//Main Program
...

}

All Arduino programs must follow the following main structure:

Blinking LED Example

void setup()
{

pinMode(13, OUTPUT);
}

void loop()
{

digitalWrite(13, HIGH);
delay(1000);
digitalWrite(13, LOW);
delay(1000);

}

Arduino UNO has a built-
in LED that is connected
to Port 13

Turn ON LED

Turn OFF LED
Wait 1 Second

Wait 1 Second

Hans-Petter Halvorsen

https://www.halvorsen.blog

Temperature Sensors

Table of Contents

Temperature Sensors
TMP36 Temperature Sensor 10k Thermistor Temperature Sensor

GND

+5V

𝑅 = 10𝑘Ω

Analog In (AI)

10𝑘 Thermistor

Hans-Petter Halvorsen

https://www.halvorsen.blog

Lowpass Filter

Table of Contents

Lowpass Filter
The Transfer Function for a Low-pass filter is given by:

𝐻 𝑠 =
𝑦'(𝑠)
𝑦(𝑠)

=
1

𝑇'𝑠 + 1

Why Lowpass Filter?
• In Measurement systems and Control Systems we typically need to deal with noise
• Noise is something we typically don’t want
• Lowpass Filters are used to remove noise from the measured signals
• Noise is high-frequency signals
• A Lowpass Filter make sure the low frequencies pass (the measurements) and removes

the high frequencies (the noise)

Where:
𝑦 is the Signal from the DAQ device
(that contains noise)
𝑦! is the Filtered Signal
𝑇! is the Filter Time Constant

Discrete Lowpass Filter
Lowpass Filter:

𝐻 𝑠 =
𝑦!(𝑠)
𝑦(𝑠) =

1
𝑇!𝑠 + 1

We can find the Differential Equation for this filter
using Inverse Laplace:

𝑇!𝑦̇! + 𝑦! = 𝑦

We use Euler Backward method: 𝑥̇ ≈ " # $" #$%
&!

Then we get:

𝑇!
𝑦! 𝑘 − 𝑦! 𝑘 − 1

𝑇'
+ 𝑦! 𝑘 = 𝑦 𝑘

This gives: 𝑦! 𝑘 = &"
&"(&!

𝑦! 𝑘 − 1 + &!
&"(&!

𝑦 𝑘

We define:
𝑇'

𝑇! + 𝑇'
≡ 𝑎

Finally, we get the following discrete
version of the Lowpass Filter:

𝑦! 𝑘 = 1 − 𝑎 𝑦! 𝑘 − 1 + 𝑎𝑦 𝑘

This equation can easily be
implemented using the Arduino
software or another programming
language

Hans-Petter Halvorsen

https://www.halvorsen.blog

PID Controller

Table of Contents

PID Controller

Tuning Parameters:

𝐾!
𝑇"
𝑇#

Where 𝑢 is the controller output and 𝑒 is the
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point
𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'𝑒̇

Proportional Gain

Integral Time [sec.]

Derivative Time [sec.]

Discrete PI controller

𝑢 𝑡 = 𝐾"𝑒 +
𝐾"
𝑇#
.
$

%
𝑒𝑑𝜏

We start with the continuous PI Controller:

𝑥̇ ≈
𝑥 𝑘 − 𝑥 𝑘 − 1

𝑇&

We can use the Euler Backward Discretization method:

Where 𝑇' is the Sampling Time

Then we get:

𝑢' − 𝑢'()
𝑇&

= 𝐾"
𝑒' − 𝑒'()

𝑇&
+
𝐾"
𝑇#
𝑒'

We derive both sides in order to remove
the Integral:

𝑢̇ = 𝐾)𝑒̇ +
𝐾)
𝑇*
𝑒

Finally, we get:

𝑢8 = 𝑢89: + 𝐾; 𝑒8 − 𝑒89: +
𝐾;
𝑇<
𝑇=𝑒8

Where 𝑒# = 𝑟# − 𝑦#

Alternative PI controller
We can also put the PI Controller on
Transfer Function form (we use Laplace):

𝑢 𝑠 = 𝐾;𝑒 𝑠 +
𝐾;
𝑇<𝑠

𝑒 𝑠

We can set 𝑧 = %
'
𝑒 ⇒ 𝑠𝑧 = 𝑒 ⇒ 𝑧̇ = 𝑒

This gives:

𝑧̇ = 𝑒

𝑢 = 𝐾)𝑒 +
𝐾)
𝑇*
𝑧

This is the PI controller on State-space form

Using Euler, we get the following discrete PI
controller:

𝑒# = 𝑟# − 𝑦#

𝑢# = 𝐾)𝑒# +
𝐾)
𝑇*
𝑧#

𝑧#(% = 𝑧# + 𝑇'𝑒#

This algorithm can easily be implemented in the
Arduino software.

The Output (typically 0-5V) of the PI(D)
controller should be sent to the process.
Arduino UNO has no Analog Output Pins
Solutions:
• Smooth PWM output using RC Circuit
• DAC chip (Digital to Analog Converter)

Arduino Analog Out

Smooth PWM output using RC Circuit

e.g., 𝑅 = 3.9𝑘Ω

e.g., 𝐶 = 10𝜇𝐹

RC Circuit
(Hardware

Lowpass Filter)
PWM Signal “Real” Analog Signal

Electrical Components

𝑅 = 3.9𝑘Ω

Capacitor
Resistor

These electronics components are typically included in a “Starter Kit”, or they can be bought “everywhere” for a few bucks.

https://en.wikipedia.org/wiki/Capacitor

A capacitor stores and releases electrical energy in a
circuit. When the circuits voltage is higher than what is
stored in the capacitor, it allows current to flow in, giving
the capacitor a charge. When the circuits voltage is lower,
the stored charge is released. Often used to smooth
fluctuations in voltage

A resistor resists the flow of electrical energy in a
circuit, changing the voltage and current as a result
(according to Ohms law, 𝑈 = 𝑅𝐼). Resistor values are
measured in ohms (Ω). The color stripes on the sides
of the resistor indicate their values. You can also use
a Multi-meter in order to find the value of a given
resistor.

e.g., 𝐶 = 10𝜇𝐹

https://en.wikipedia.org/wiki/Capacitor

DAC Chip
Arduino UNO has no Analog Output Pins, so we need a
DAC such as, e.g., Microchip MCP4911, MCP4725 or
similar

Microchip MCP4911 can be bought “everywhere” (10 NOK).

MCP4911: 10-bit single DAC, SPI Interface

MCP4725

The MCP4725 is a little more
expensive, but simpler to use

12-bit resolution
I2C Interface

PWM
PWM is a digital (i.e., square wave) signal that oscillates according to a given frequency and
duty cycle.
The frequency (expressed in Hz) describes how often the output pulse repeats.
The period is the time each cycle takes and is the inverse of frequency.
The duty cycle (expressed as a percentage) describes the width of the pulse within that
frequency window.

You can adjust the duty cycle
to increase or decrease the
average "on" time of the
signal. The following diagram
shows pulse trains at 0%,
25%, and 100% duty:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Arduino Library

Table of Contents

Why create your own Libraries?
• Better Code structure
• Reuse your Code in different Applications
• Distribute to others

You need at least two files for a library:
• Header file (.h) - The header file has definitions for the library
• Source file (.cpp) – The Functions within the Class
Note the Library Name, Folder name, .h and .cpp files all need
to have the same name

Arduino Library

Arduino Library Example
#include <Fahrenheit.h>

Fahrenheit fahr;

void setup()
{

float f;
float c;

Serial.begin(9600);
}

void loop()
{

...
f = fahr.c2f(c);
Serial.println(f);

...
c = fahr.f2c(f);
Serial.println(c);

}

Hans-Petter Halvorsen

https://www.halvorsen.blog

Air Heater

Table of Contents

Air Heater System

𝑇̇GHI =
1
𝜃I

−𝑇GHI + 𝐾J𝑢 𝑡 − 𝜃K + 𝑇LMNMathematical Model:

𝜃% = 22 𝑠

𝜃* = 2 𝑠

𝐾+ = 3.5
℃
𝑉

𝑇,-. = 21.5 ℃

We can, e.g., use the
following values in the
simulation:

Discrete Air Heater
𝑇̇GHI =

1
𝜃I

−𝑇GHI + 𝐾J𝑢 𝑡 − 𝜃K + 𝑇LMN

𝑥̇ ≈
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇&

We can use e.g., the Euler Approximation in order to find the discrete Model:

Continuous Model:

𝑇' - Sampling Time 𝑥 𝑘 - Present value

𝑥 𝑘 + 1 - Next (future) value

The discrete Model will then be on the form:

𝑥 𝑘 + 1 = 𝑥 𝑘 + …

We can then implement the discrete model in any programming language

Hans-Petter Halvorsen

https://www.halvorsen.blog

ThingSpeak

Table of Contents

• ThingSpeak is an IoT analytics platform service
that lets you collect and store sensor data in the
cloud and develop Internet of Things applications.

• ThingSpeak has a free Web Service (REST API) that
lets you collect and store sensor data in the cloud
and develop Internet of Things applications.

• It works with Arduino, Raspberry Pi, MATLAB and
LabVIEW, Python, etc.

https://thingspeak.com

ThingSpeak

https://thingspeak.com/

ThingSpeak + Arduino

• Install the “thingspeak“ Arduino Library using the Library
Manager in your Arduino IDE

• Use e.g., the built-in example "WriteSingleField" as a starting
point.

• This example is available for different boards and
configuration, such as Arduino WiFi rev2 board, Arduino WiFi
shield, etc.

• Then you can modify the example to suit your needs

ThingSpeak + Arduino

Currently, a single channel can only be
updated once every 15 seconds.

Th
in

gS
pe

ak
 +

 A
rd

ui
no

#include "ThingSpeak.h"
#include <WiFiNINA.h>
#include "secrets.h"
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password
int keyIndex = 0; // your network key Index number (needed only for WEP)
WiFiClient client;
unsigned long myChannelNumber = SECRET_CH_ID;
const char * myWriteAPIKey = SECRET_WRITE_APIKEY;
int channelField = 3;
int SensorPin = 0;
float adcValue;
float voltageValue;
float temperatureValue = 0;
int samplingTime = 20000; // Wait 20 seconds between each hannel update
void setup() {

Serial.begin(115200); // Initialize serial
if (WiFi.status() == WL_NO_MODULE) {

Serial.println("Communication with WiFi module failed!");
// don't continue
while (true);

}
String fv = WiFi.firmwareVersion();

if (fv != "1.0.0") {
Serial.println("Please upgrade the firmware");

}

ThingSpeak.begin(client); //Initialize ThingSpeak
}
void loop() {
// Connect or reconnect to WiFi
if(WiFi.status() != WL_CONNECTED){

Serial.print("Attempting to connect to SSID: ");
Serial.println(SECRET_SSID);
while(WiFi.status() != WL_CONNECTED){

WiFi.begin(ssid, pass); // Connect to WPA/WPA2 network. Change this line if using open or WEP network
Serial.print(".");
delay(5000);

}
Serial.println("\nConnected.");

}
adcValue = analogRead(SensorPin); // Get Data from Temperature Sensor
voltageValue = (adcValue*5)/1023;
temperatureValue = 100*voltageValue - 50;
Serial.println(temperatureValue);

// Write to ThingSpeak
int x = ThingSpeak.writeField(myChannelNumber, channelField, temperatureValue, myWriteAPIKey);
if(x == 200){

Serial.println("Channel update successful.");
}
else{

Serial.println("Problem updating channel. HTTP error code " + String(x));
}

delay(20000); // Wait 20 seconds to update the channel again
}

// Use this file to store all of the private credentials
// and connection details

#define SECRET_SSID "MySSID" // replace MySSID with your WiFi network name
#define SECRET_PASS "xxxxxx" // replace MyPassword with your WiFi password

#define SECRET_CH_ID 000000 // replace 0000000 with your channel number
#define SECRET_WRITE_APIKEY "XYZ" // replace XYZ with your channel write API Key

secrets.h

This Example uses an Arduino WiFi rev2
board.
The Example reads values from TMP36
Temperature Sensor and write the values
to ThingSpeak

Read/Write using a Web Browser

Set Kp Remotely Example:

https://api.thingspeak.com/update?api_key=<WriteKey>&field3=2

Read Kp Remotely Example:

Enter the following in a Web Browser (or from a Programming Language)

https://api.thingspeak.com/channels/<ChannelId>/fields/3/last.json?key=<ReadKey>

{"created_at":"2017-06-26T07:41:54Z","entry_id":1270,"field3":"2"}Response in Browser:

We set Kp=2

We read Kp=2

https://api.thingspeak.com/update?api_key=XXXXXX&field3=2
https://api.thingspeak.com/channels/279941/fields/3/last.json?key=%3cReadKey

Hans-Petter Halvorsen

https://www.halvorsen.blog

LabVIEW LINX

Table of Contents

The LabVIEW LINX Toolkit adds support
for Arduino, Raspberry Pi, etc.

LabVIEW LINX

LabVIEW LINX Example

ThingSpeak + LabVIEW
• ThingSpeak uses standard HTTP REST API,

which can be used from any kind of
Programming Language, including LabVIEW

• In LabVIEW you can use the HTTP client VIs

https://api.thingspeak.com/update?api_key=xxxxxxx&field1=22.5

ThingSpeak + LabVIEW

Hans-Petter Halvorsen

https://www.halvorsen.blog

Cyber Security

Table of Contents

• IoT solutions and Data Security? How can we make
sure our applications and data are safe?

• Security is crucial in IoT/IIoT Applications. Why?
• What issues do we need to deal with regarding IoT

and Cyber Security?
• What can be (or what have you) done to protect the

system (and data) you have created?
• How does ThingSpeak handle security?
• Etc.

Cyber Security and IoT

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

