

Internet of Things and Arduino

Hans-Petter Halvorsen

- Introduction
- <u>Arduino</u>
- <u>Temperature Sensors</u>
- Lowpass Filter
- PID Controller and Arduino Analog Out
- <u>Arduino Library</u>
- <u>Air Heater</u>
- <u>ThingSpeak</u>
- LabVIEW LINX
- <u>Cyber Security</u>

Introduction

- Cloud services and IoT solutions are becoming increasingly popular.
- Even the industry embrace IoT as Industrial Internet of Things (IIoT)
- IIoT is an important part of the next generation Automation Systems
- We will use Arduino as our IoT device
- Arduino is popular to use in different IoT applications

Topics

- Internet of Things (IoT)
- Microcontrollers (Arduino)
- PWM (Pulse Width Modulation)
- Automation
- ThingSpeak (IoT Cloud Service)
- Cyber Security

Delivery

- In this Assignment we will create an embedded Arduino PI(D) controller from scratch.
- One of the challenges is that Arduino UNO has no Analog Out.
- How can we solve that?
- The Data should be stored in the Cloud
- The Final System should be tested on the Air Heater System, i.e., you should control the Air Heater System
- Compare the results using LabVIEW LINX
- You should start your work by creating a System sketch. In that way
 you will get an overview of the system you are going to create and are
 able to plan your work and progress, so you are finished within the
 given deadline

For more details, see the web site

Arduino

Hans-Petter Halvorsen

Arduino Software

Anduino Programs All Arduino programs must follow the following main structure:

```
// Initialization, define variables, etc.
```

```
void setup()
```

```
// Initialization
```

```
void loop()
{
    //Main Program
```

Blinking LED Example

Temperature Sensors

Hans-Petter Halvorsen

Temperature Sensors

TMP36 Temperature Sensor

10k Thermistor Temperature Sensor

Lowpass Filter

Hans-Petter Halvorsen

Lowpass Filter

The Transfer Function for a Low-pass filter is given by:

$$H(s) = \frac{y_f(s)}{y(s)} = \frac{1}{T_f s + 1}$$

Where:

y is the Signal from the DAQ device (that contains noise) y_f is the Filtered Signal T_f is the Filter Time Constant

Why Lowpass Filter?

- In Measurement systems and Control Systems we typically need to deal with noise
- Noise is something we typically don't want
- Lowpass Filters are used to remove noise from the measured signals
- Noise is high-frequency signals
- A Lowpass Filter make sure the low frequencies pass (the measurements) and removes the high frequencies (the noise)

Discrete Lowpass Filter

Lowpass Filter:

$$H(s) = \frac{y_f(s)}{y(s)} = \frac{1}{T_f s + 1}$$

We can find the Differential Equation for this filter using Inverse Laplace:

$$T_f \dot{y}_f + y_f = y$$

We use Euler Backward method: $\dot{x} \approx \frac{x(k) - x(k-1)}{T_s}$

Then we get:

$$T_f \ \frac{y_f(k) - y_f(k-1)}{T_s} + y_f(k) = y(k)$$

This gives: $y_f(k) = \frac{T_f}{T_f + T_s} y_f(k-1) + \frac{T_s}{T_f + T_s} y(k)$

We define:

$$\frac{T_s}{T_f + T_s} \equiv a$$

Finally, we get the following discrete version of the Lowpass Filter:

 $y_f(k) = (1 - a)y_f(k - 1) + ay(k)$

This equation can easily be implemented using the Arduino software or another programming language

PID Controller

Hans-Petter Halvorsen

PID Controller

$$u(t) = K_p e + \frac{K_p}{T_i} \int_0^t e d\tau + K_p T_d \dot{e}$$

Where u is the controller output and e is the control error:

$$e(t) = r(t) - y(t)$$

r is the Reference Signal or Set-point *y* is the Process value, i.e., the Measured value

Tuning Parameters:

- K_p Proportional Gain
- T_i Integral Time [sec.]
- T_d Derivative Time [sec.]

Discrete PI controller

We start with the continuous PI Controller:

$$u(t) = K_p e + \frac{K_p}{T_i} \int_0^t e d\tau$$

We derive both sides in order to remove the Integral:

$$\dot{u} = K_p \dot{e} + \frac{K_p}{T_i} e$$

We can use the Euler Backward Discretization method:

$$\dot{x} \approx \frac{x(k) - x(k-1)}{T_s}$$
 Where T_s is t

Where T_s is the Sampling Time

Then we get:

Finally, we get:

$$\frac{u_k - u_{k-1}}{T_s} = K_p \frac{e_k - e_{k-1}}{T_s} + \frac{K_p}{T_i} e_k$$

$$u_{k} = u_{k-1} + K_{p}(e_{k} - e_{k-1}) + \frac{K_{p}}{T_{i}}T_{s}e_{k}$$

Where $e_{k} = r_{k} - y_{k}$

Alternative PI controller

We can also put the PI Controller on Transfer Function form (we use Laplace):

$$u(s) = K_p e(s) + \frac{K_p}{T_i s} e(s)$$

We can set
$$z = \frac{1}{s}e \Rightarrow sz = e \Rightarrow \dot{z} = e$$

This gives:

 $\dot{z} = e$

$$u = K_p e + \frac{K_p}{T_i} z$$

This is the PI controller on State-space form

Using Euler, we get the following discrete PI controller:

$$e_{k} = r_{k} - y_{k}$$
$$u_{k} = K_{p}e_{k} + \frac{K_{p}}{T_{i}}z_{k}$$
$$z_{k+1} = z_{k} + T_{s}e_{k}$$

This algorithm can easily be implemented in the Arduino software.

Arduino Analog Out

The Output (typically 0-5V) of the PI(D) controller should be sent to the process.

Arduino UNO has no Analog Output Pins Solutions:

- Smooth PWM output using RC Circuit
- DAC chip (Digital to Analog Converter)

Smooth PWM output using RC Circuit

Electrical Components

Capacitor

Resistor $R = 3.9k\Omega$

A capacitor stores and releases electrical energy in a circuit. When the circuits voltage is higher than what is stored in the capacitor, it allows current to flow in, giving the capacitor a charge. When the circuits voltage is lower, the stored charge is released. Often used to smooth fluctuations in voltage

https://en.wikipedia.org/wiki/Capacitor

A resistor resists the flow of electrical energy in a circuit, changing the voltage and current as a result (according to Ohms law, U = RI). Resistor values are measured in ohms (Ω). The color stripes on the sides of the resistor indicate their values. You can also use a Multi-meter in order to find the value of a given resistor.

These electronics components are typically included in a "Starter Kit", or they can be bought "everywhere" for a few bucks.

DAC Chip

Arduino UNO has no Analog Output Pins, so we need a DAC such as, e.g., Microchip **MCP4911**, MCP4725 or similar

MCP4911: 10-bit single DAC, SPI Interface

12-bit resolution I2C Interface

The MCP4725 is a little more expensive, but simpler to use

Microchip MCP4911 can be bought "everywhere" (10 NOK).

PWM

PWM is a digital (i.e., square wave) signal that oscillates according to a given *frequency* and *duty cycle*.

The frequency (expressed in Hz) describes how often the output pulse repeats.

The period is the time each cycle takes and is the inverse of frequency.

The duty cycle (expressed as a percentage) describes the width of the pulse within that frequency window.

You can adjust the duty cycle to increase or decrease the average "on" time of the signal. The following diagram shows pulse trains at 0%, 25%, and 100% duty:

Arduino Library

Hans-Petter Halvorsen

Arduino Library

Why create your own Libraries?

- Better Code structure
- Reuse your Code in different Applications
- Distribute to others

You need at least two files for a library:

- Header file (.h) The header file has definitions for the library
- Source file (.cpp) The Functions within the Class
 Note the Library Name, Folder name, .h and .cpp files all need to have the same name

Arduino Library Example

	C Fahrenheit, h × G Fahrenheit.cop	Π	<pre>#include <fahrenheit.h></fahrenheit.h></pre>
ינו O	1 /* 2 Fahrenheit.h - Library con	verting between Celsius and Fahrenheit.	Fahrenheit fahr;
	3 Created by Hans-Petter Hat 4 */	Vorsen. 2018	void setup()
¥	<pre>5 #ifndef Fahrenheit_h 6 #define Fahrenheit_h</pre>	C Fahrenheit.h C Fahrenheit.cpp ×	{ float f:
	7 8 #include "Arduino.h"	Pahrenheit.cpp – Library converting between Cel Created by Hans-Petter Halvorsen, 2018	float c;
©	9 10 class Fahrenheit{ 11 public:	4 */ 5 6 #include "Fahrenheit.h" 7	<pre>Serial.begin(9600); }</pre>
	<pre>12 Fahrenheit(); 13 float c2f(float Tc); 14 float f2c(float Tf); 15 };</pre>	<pre>8 Fahrenheit::Fahrenheit(){ 9 10 } 11</pre>	<pre>void loop() {</pre>
	16 17 #endif	<pre>12 float Fahrenheit::c2f(float Tc){ 13 float Tf; 14 Tf = Tc * 9/5 + 32; 15 return Tf;</pre>	<pre> f = fahr.c2f(c); Comical environment log(f);</pre>
-*1		16 } 17	Serial.princin(1);
⊗ 0 ▲	0 <select programmer=""> <s< td=""><td>elect 18 float Fahrenheit::f2c(float Tf){ 19 float Tc; 20 Tc = (Tf-32)*(5/9); 21 return Tc; 22 }</td><td> c = fahr.f2c(f); Serial.println(c); }</td></s<></select>	elect 18 float Fahrenheit::f2c(float Tf){ 19 float Tc; 20 Tc = (Tf-32)*(5/9); 21 return Tc; 22 }	 c = fahr.f2c(f); Serial.println(c); }

Air Heater

Hans-Petter Halvorsen

Air Heater System

Mathematical Model:

$$\dot{T}_{out} = \frac{1}{\theta_t} \{ -T_{out} + [K_h u(t - \theta_d) + T_{env}] \}$$

 $\theta_t = 22 s$

 $\theta_d = 2 s$

 $K_h = 3.5 \frac{^{\circ}\mathrm{C}}{V}$

 $T_{env} = 21.5 \,^{\circ}\text{C}$

We can, e.g., use the following values in the simulation:

Discrete Air Heater

Continuous Model:

$$\dot{T}_{out} = \frac{1}{\theta_t} \{ -T_{out} + [K_h u(t - \theta_d) + T_{env}] \}$$

We can use e.g., the Euler Approximation in order to find the discrete Model:

$$\dot{x} \approx \frac{x(k+1) - x(k)}{T_s}$$
 T_s - Sampling Time $x(k)$ - Present value $x(k+1)$ - Next (future) value

The discrete Model will then be on the form:

$$x(k+1) = x(k) + \dots$$

We can then implement the discrete model in any programming language

ThingSpeak

Hans-Petter Halvorsen

ThingSpeak

- ThingSpeak is an IoT analytics platform service that lets you collect and store sensor data in the cloud and develop Internet of Things applications.
- ThingSpeak has a free Web Service (REST API) that lets you collect and store sensor data in the cloud and develop Internet of Things applications.
- It works with Arduino, Raspberry Pi, MATLAB and LabVIEW, Python, etc.

https://thingspeak.com

ThingSpeak + Arduino

	💿 WriteTMP36Dat	ta Arduino 1.8.1	3				- 0	×
	File Edit Sketch T	ools Help						
	New	Ctrl+N						Ø
	Open	Ctrl+0						
	Open Recent	,						^
WriteTMP36Data Arduino 1.8.13	Examples	Í	Built-in Examples		1 - 1 1			
Edit Stetch Toole Halo	Close	Ctrl+W	01.Basics	Speak Channel an	nd Field	Landarda A contr		
	Save	Ctrl+S	02.Digital	nel on Thingspea	ak every 20 sec	conas.		
	Save As	Ctrl+Shift+S	03.Analog	>				
WriteTMP36Data secrets.h	Page Setup	Ctrl+Shift+P	04.Communication	, oject with your	network connec	ction and ThingSpeak	channel detail:	5.
/*	Print	Ctrl+P	05.Control	>				
White MMD2 Commentation Date to This second channel and Ticld	Dreferencer	Ctrl+Comma	06.Sensors	×				
Write impso temperature bata to iningspeak channel and rield		con commu	08.Strings	>				
Description: Writes a value to a channel on Thingspeak every 20 seconds.	Quit	Ctrl+Q	09.USB	>				
Hardware: Arduin Clibrary Manager	#Include	Secrets	10.StarterKit_BasicKit	>				
Modify the secre	abar said	1 - 980	11.ArduinoISP	notwork SSTD (n.	2000)			
*/ Type All V Topic All V thingspeak	char page	[] - SEC	Examples for any board	twork password	anic)			
ThingSpeak	int keyIn	dev = 0	Adafruit Circuit Playground	twork key Indev	number (neede	only for WEP)		
#include "ThingSpet ThingSpet Communication Library for Arduino, ESP8266 & EP532 ThingSpeak (https://www.thingspeak.com) is an analytic	WiFiClient	t clier	Bridge	> CWOIR ROY INGCA	indiaber (neede)	a only for whit,		
#include <wifinina aggregate,="" allows="" analyze="" and="" cloud.<="" data="" in="" iot="" live="" platform="" service="" streams="" td="" that="" the="" to="" visualize="" you=""><td>#1110110II</td><td>C CIICI</td><td>Ethernet</td><td>></td><td></td><td></td><td></td><td></td></wifinina>	#1110110II	C CIICI	Ethernet	>				
#include "secrets.	unsigned	long my	Firmata	CH TD:				
	const char	r * mvWi	SD	TE APIKEY:				
char seid[] = SECP ThingSpeak_asukiaaa			Servo	,				
Charles Saral - Show by Assiki Kono	int channe	elField	Stepper	>	-			
Cital pass [] = SECK An API manager for Iningspeak it writes field values for Iningspeak.			Temboo	ArduinoEthernet				
Version 1.0.1 V Install	int Senso:	rPin = (WiFiNINA	ArduinoMKR1000				
WiFiClient client	float add	Value;	RETIRED	ArduinoMKRETHShield >				
	float vol	tageValu	Examples for Arduino Uno WiFi Rev2	ArduinoMKRVIDOR4000 >				
unsigned long myCh	float tem	perature	EEPROM	ArduinoMKRWiFi1010				
const char * myWri			SoftwareSerial	ArduinoUnoWiFi Rev2	ReadField			
	int sampl:	ingTime	SPI	ArduinoWiFiShield	WriteMultipleFields	ate		
int channelField =				ArduinoWiFiShield101	WriteSingleField			
Close	void setu	p() {	Examples from Custom Libraries	ArduinoYun >				
int SensorPin = 0:	Serial.	begin(11	Fahrenheit	ESP8266 >				
		12	ThingSpeak	extras >				
-	<							>
Save Canceled.	Save Canceled							
	ouve ounceled.							

ThingSpeak + Arduino

- Install the "thingspeak" Arduino Library using the Library Manager in your Arduino IDE
- Use e.g., the built-in example "WriteSingleField" as a starting point.
- This example is available for different boards and configuration, such as Arduino WiFi rev2 board, Arduino WiFi shield, etc.
- Then you can modify the example to suit your needs

Currently, a single channel can only be **updated once every 15 seconds**.

#include "ThingSpeak.h" This Example uses an Arduino WiFi rev2 #include <WiFiNINA.h> #include "secrets.h" char ssid[] = SECRET SSID; // your network SSID (name) board. char pass[] = SECRET PASS; // your network password int keyIndex = 0; // your network key Index number (needed only for WEP) WiFiClient client; The Example reads values from TMP36 unsigned long myChannelNumber = SECRET CH ID; const char * myWriteAPIKey = SECRET WRITE APIKEY; int channelField = 3; Temperature Sensor and write the values int SensorPin = 0; float adcValue; float voltageValue; to ThingSpeak float temperatureValue = 0; int samplingTime = 20000; // Wait 20 seconds between each hannel update void setup() Serial.begin(115200); // Initialize serial if (WiFi.status() == WL NO MODULE) { secrets.h Serial.println("Communication with WiFi module failed!"); // don't continue while (true); // Use this file to store all of the private credentials // and connection details String fv = WiFi.firmwareVersion(); if (fv != "1.0.0") { Serial.println("Please upgrade the firmware"); // replace MySSID with your WiFi network name #define SECRET SSID "MySSID" #define SECRET PASS "xxxxxx" // replace MyPassword with your WiFi password ThingSpeak.begin(client); //Initialize ThingSpeak #define SECRET CH ID 000000 // replace 0000000 with your channel number #define SECRET WRITE APIKEY "XYZ" void loop() { // replace XYZ with your channel write API Key // Connect or reconnect to WiFi if (WiFi.status() != WL CONNECTED) { Serial.print("Attempting to connect to SSID: "); Serial.println(SECRET SSID); while(WiFi.status() != WL CONNECTED) { WiFi.begin(ssid, pass); // Connect to WPA/WPA2 network. Change this line if using open or WEP network Serial.print("."); delay(5000); Serial.println("\nConnected."); adcValue = analogRead(SensorPin); // Get Data from Temperature Sensor voltageValue = (adcValue*5)/1023; temperatureValue = 100*voltageValue - 50; Serial.println(temperatureValue); // Write to ThingSpeak int x = ThingSpeak.writeField(myChannelNumber, channelField, temperatureValue, myWriteAPIKey); if(x == 200) { Serial.println("Channel update successful."); else{ Serial.println("Problem updating channel. HTTP error code " + String(x)); delay(20000); // Wait 20 seconds to update the channel again

Read/Write using a Web Browser

Set Kp Remotely Example:

Enter the following in a Web Browser (or from a Programming Language)

We set Kp=2

Field 3

Kp

https://api.thingspeak.com/update?api_key=<WriteKey>&field3=2

Read Kp Remotely Example:

https://api.thingspeak.com/channels/<ChannelId>/fields/3/last.json?key=<ReadKey>

Response in Browser: {"created_at":"2017-06-26T07:41:54Z","entry_id":1270,"field3":"2"}

We read Kp=2

 \checkmark

LabVIEW LINX

Hans-Petter Halvorsen

LabVIEW LINX

The LabVIEW LINX Toolkit adds support for Arduino, Raspberry Pi, etc.

LabVIEW File Operate	Tools Help				- 2020 - C	LINX	
1	Measurement & Automation Explorer Instrumentation			Version	Repository	Firmware Wizard	
	Real-Time Module		NI LabVIEW LINX Toolkit	1.0.0.9	NI LabVIEW Tools Network		
	MathScript Window					Device Family	
	DSC Module	Dpen E:					
	Merge					Arduino	
	Security	nt Files					
	User Name	State Mac				Device Type	
	Source Control	tation.lvpn				Arduino Uno	
	VI Analyzer	em for Poo					
	LLB Manager	ad IMP3					
	Shared Variable					Firmware Upload Method	
	Distributed System Manager	VI.VI				Serial / USB	
	Find VIs on Disk	- M I Chant					
	Prepare Example VIs for NI Example Finder	og vvnte.v					
	Remote Panel Connection Manager	Did M					
Find	Web Publishing Tool	ity and					
Conne	Create Data Link	in the dis				Heip Settings	
functio	Find LabVIEW Add-ons	hnical su					
	MakerHub 🕨		Ready				
	VI Package Manager						
	Vision Assistant						
	Advanced						
	Options						

LabVIEW LINX Example

ThingSpeak + LabVIEW

- ThingSpeak uses standard HTTP REST API, which can be used from any kind of Programming Language, including LabVIEW
- In LabVIEW you can use the HTTP client VIs

Q Search	🔧 Customize 🔻		
HTTP X		HTTP HEAD Ly Ly	HTTP
Open Handle	GET	HEAD	Close Handle
HTTP PUT Ly 🍢			
PUT	POST	POST Multipart	DELETE

https://api.thingspeak.com/update?api_key=xxxxxx&field1=22.5

SaveThingSpeak.vi Block Diagram	N -	
File Edit View Project Operate Tools Window Help	45	Thi
💠 🛞 🛑 🛯 💡 🕮 🏎 🗃 🕩 🚯 15pt Application Font 🔻 🏪 🙃 🐝	▶ Search	🔍 🢡 Spe
Error In Error In Server Inttps://api.thingspeak.com/ Method update?api.key=%s&frield1=%.27 FieldValue FieldValue Title3		Error Out

ThingSpeak + LabVIEW

Cyber Security

Hans-Petter Halvorsen

Cyber Security and IoT

- IoT solutions and Data Security? How can we make sure our applications and data are safe?
- Security is crucial in IoT/IIoT Applications. Why?
- What issues do we need to deal with regarding IoT and Cyber Security?
- What can be (or what have you) done to protect the system (and data) you have created?
- How does ThingSpeak handle security?
- Etc.

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

